Supplementary Information for

The Cytoplasmic Heme Binding Protein PhuS of *P. aeruginosa* is a Heme Oxygenase Titratable Regulator of Heme Uptake.

Maura J. O'Neill and Angela Wilks*

From: The Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201-1140.

*To whom correspondence should be addressed: Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, HSF II, 20 Penn Street, Baltimore, MD 21201-1140. TEL: 410-706-2537. FAX: 410-706-5017. e-mail: awilks@rx.umaryland.edu

Table S1. Bacterial strains and plasmids.

Strain	Description	Source or reference
E. coli BL21(DE3)	F-dcm omp T hsd S(r_B m_B) $gal\lambda$ (DE3)	Stratagene
P. aeruginosa PAO1	Wild type	¹ Holloway BW, 1955
PAO1 ∆hemO	PAO1 hemO::aacC1 Gm	² Oglesby-Sherrouse & Vasil, 2010
PAO1 ∆phuS	PAO1 Δphus	³ Barker et al, 2012
Plasmids MRL2	Amp ^R ; pET-11a derivate harboring the rat liver outer mitochondrial membrane cytochrome b_5 gene encoding a water-soluble domain of the cytochrome b_5	⁴ Rivera et al., 1995

Holloway, B. W. J Gen Microbiol **1955**, 13, 572-581. Oglesby-Sherrouse, A. G.; Vasil, M. L. PLoS One **2010**, 5, e9930. Barker, K. D., Barkovits, K., Wilks, A. J Biol Chem **2012**, 287, 18342-18350. Rivera, M.; Walker, F. A. Anal Biochem **1995**, 230, 295-302. 1. 2. 3. 4.

Table S2. Primers and probes used in this study.

<u>Primers and Probes</u> <u>Sequence</u>

bphO probe	5'-/56-FAM/CCC GGC AGA TCG ACA GCC CC/3BHQ_1/-3'
bphO F primer	5'-GCG CTG GCA GGA GTT TCT C-3'
bphO R primer	5'-ATC GAC GAA ACG AAA GGA ATG T-3'
phuS probephuS F primerphuS R primer	5'-/56-FAM/CTT TCG GCC GCC GCT TCG A/3BQH_1/-3' 5'-TGC CGA CGA ACA CCA TGA-3' 5'-TGG CGA CCT GGC GAA A-3'
hemO probe	5'-/56-FAM/TTC GTC GCC/ZEN/GCC CAG TAC CTC TTC CAG CAT/3IABlkFQ/3'
ham O E primar	5, 0,
<i>hemO</i> F primer	5'-TGG TGA AGA GCA AGG AAC CCT TC-3'
hemO R primer	5'-TGG TGA AGA GCA AGG AAC CCT TC-3' 5'-TTC GTT GCG ATA AAG CGG CTC CA-3'

Figure S1. Growth curves of wild type and mutant PAO1 strains in the presence of heme. Cultures were grown in M9 minimal media supplemented with (A) 0 μ M heme, (B) 0.5 μ M heme (C) 5.0 μ M heme. Growth curves for PAO1 (O), $\Delta phuS$ (\Box), hemO (\Diamond), and $\Delta phuS/hemO$ (Δ).

Figure S2. Relative expression of the heme utilization proteins in the PAO1 $\Delta phuS$, $\Delta hemO$ and $\Delta phuS/\Delta hem$ strains compared to wild type. (A) PhuR, (B) PhuS, (C) HemO, and (D) BphO. RNA isolated from the indicated strains following 8 hours growth in media supplemented with heme as indicated was analyzed as described in the Methods. The data represents the standard deviation from at least three independent experiments in triplicate. p-values for the mRNA levels of the individual genes in the deletion strains were normalized to the levels in PAO1 where *p< 0.05, **p< 0.005 or ***p<0.001.

Figure S3. LC-MS/MS BVIX isomer fragmentation patterns for PAO1 Δ*phuS* **supplemented with 0.5 μM** 13 C-heme. (A) HPLC analysis of BV isomers following extraction from the extracellular media. BVIX isomer peaks as marked. *Indicates a non-BVIX contaminant; (B) MS/MS fragmentation of 13 C-BVIXα (red line) and 12 C-BVIXα (black); (C) MS/MS fragmentation of 13 C-BVIXδ (red line) and 12 C-BVIXδ (black); MS/MS fragmentation of 13 C-BVIXβ (red line) and 12 C-BVIXβ (black). LC-MS/MS was performed as described in the Methods with multiple reaction monitoring.

Figure S4. LC-MS/MS BVIX isomer fragmentation patterns for PAO1 ΔhemO supplemented with 0.5 μM 13 C-heme. (A) HPLC analysis of BV isomers following extraction from the extracellular media. BVIX isomer peaks as marked. *Indicates a non-BVIX contaminant; (B) MS/MS fragmentation of 13 C-BVIXα (red line) and 12 C-BVIXα (black); (C) MS/MS fragmentation of 13 C-BVIXδ (red line) and 12 C-BVIXδ (black); MS/MS fragmentation of 13 C-BVIXβ (red line) and 12 C-BVIXβ (black). LC-MS/MS was performed as described in the Methods with multiple reaction monitoring.

Figure S5. LC-MS/MS BVIX isomer fragmentation patterns for PAO1 ΔphuS/ΔhemO supplemented with 0.5 μ M 13 C-heme. (A) HPLC analysis of BV isomers following extraction from the extracellular media. BVIX isomer peaks as marked. *Indicates a non-BVIX contaminant; (B) MS/MS fragmentation of 13 C-BVIXα (red line) and 12 C-BVIXα (black); (C) MS/MS fragmentation of 13 C-BVIXδ (red line) and 12 C-BVIXδ (black); MS/MS fragmentation of 13 C-BVIXβ (red line) and 12 C-BVIXβ (black). LC-MS/MS was performed as described in the Methods with multiple reaction monitoring.